TAIL (THERMAL ASYMMETRIC INTERLACED) PCR

for obtaining DNA sequence from flanking regions

Adapted from Liu, Y.-G. \& Whittier, R. F. (1995)
Thermal Asymmetric Interlaced PCR: Automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25: 674-681.

1. Primer Design

Design three adjacent primers from your sequence (priming outwards from the sequence). These become the specific (SP) primers. SP1 is the innermost primer, SP2 is the middle primer and SP3 is nearest the end of the known sequence, and are used in the $1^{\circ}, 2^{\circ}$ and $3^{\circ} \mathrm{PCR}$ reactions respectively.

The SP primers need to be ~ 20-mers and have a T_{m} of $60-62^{\circ} \mathrm{C}$.
Use the following arbitrary degenerate (AD) primers.

Name	Sequence (5'-3')	Length	T_{m}	Degeneracy
TAIL-AD1	NGTCGASWGANAWGAA	$16-\mathrm{mer}$	$46^{\circ} \mathrm{C}$	$128 \times$
TAIL-AD2	GTNCGASWCANAWGTT	$16-\mathrm{mer}$	$46^{\circ} \mathrm{C}$	$128 \times$
TAIL-AD3	WGTGNAGWANCANAGA	$16-\mathrm{mer}$	$45^{\circ} \mathrm{C}$	$256 \times$

$\mathrm{S}=\mathrm{C}$ or G
$\mathrm{W}=\mathrm{A}$ or T

Choose one AD primer (e.g. AD1) and use it for the $1^{\circ}, 2^{\circ}$ and 3° reactions. If this primer fails try AD2, and so on. More bands can be expected when using AD3 (because of the higher degeneracy).

2. Primary $\left(1^{\circ}\right)$ PCR Reaction

Set up the $1^{\circ} \mathrm{PCR}$ reaction ($20 \mu \mathrm{~L}$ volume).

	$\times \mathbf{1}$	
Milli-Q $\mathrm{H}_{2} \mathrm{O}$	0.3	
Betaine $(5 \mathrm{M})$	$4.0 \quad(1 \mathrm{M})$	
dNTPs $(2 \mathrm{mM})$	2.5	$(0.25 \mathrm{mM})$
$10 \times$ PCR Buffer	2.0	$(1 \times)$
$\mathrm{MgCl}_{2}(25 \mathrm{mM})$	1.0	$(1.25 \mathrm{mM})$
AD Primer* $^{*}(10 \mathrm{pmol} / \mu \mathrm{L})$	8.0	$(4 \mu \mathrm{M})$
SP1 Primer $(10 \mathrm{pmol} / \mu \mathrm{L})$	1.0	$(0.5 \mu \mathrm{M})$
Genomic DNA	1.0	
Taq Polymerase $(5 \mathrm{U} / \mu \mathrm{L})$	$0.2 \quad(1 \mathrm{U})$	
TOTAL	$\mathbf{2 0} \boldsymbol{\mu \mathrm { L }}$	

* Use AD primer AD1, AD2 or AD3.

Use the following $1^{\circ} \mathrm{PCR}$ program:

Step			
1	$94^{\circ} \mathrm{C}$	2 min	$\times 1$
2	$94^{\circ} \mathrm{C}$	30 sec	
3	$60^{\circ} \mathrm{C}$	1 min	$\times 5$
4	$72^{\circ} \mathrm{C}$	2 min	
5	$94^{\circ} \mathrm{C}$	30 sec	
6	$25^{\circ} \mathrm{C}$	1 sec	$\times 1$
7*	$72^{\circ} \mathrm{C}$	2 min	
8	$94^{\circ} \mathrm{C}$	30 sec	
9	$44^{\circ} \mathrm{C}$	1 min	$\times 10$
10	$72^{\circ} \mathrm{C}$	2 min	
11	$94^{\circ} \mathrm{C}$	30 sec	
12	$60^{\circ} \mathrm{C}$	1 min	
13	$72^{\circ} \mathrm{C}$	2 min	
14	$94^{\circ} \mathrm{C}$	30 sec	
15	$60^{\circ} \mathrm{C}$	1 min	$\times 15$ supercycles
16	$72^{\circ} \mathrm{C}$	2 min	
17	$94^{\circ} \mathrm{C}$	30 sec	
18	$44^{\circ} \mathrm{C}$	1 min	
19	$72^{\circ} \mathrm{C}$	2 min	
20	$72^{\circ} \mathrm{C}$	5 min	$\times 1$
21	$4^{\circ} \mathrm{C}$	HOLD	

[^0]
3. Secondary ($\mathbf{2}^{\circ}$) PCR Reaction

Dilute the $1^{\circ} \mathrm{PCR}$ reaction $100 \times$ with MilliQ- $\mathrm{H}_{2} \mathrm{O}$. Set up the $2^{\circ} \mathrm{PCR}$ reaction $(20 \mu \mathrm{~L}$ volume).

	$\times \mathbf{1}$	
Milli-Q $\mathrm{H}_{2} \mathrm{O}$	2.3	
Betaine $(5 \mathrm{M})$	4.0	$(1 \mathrm{M})$
dNTPs $(2 \mathrm{mM})$	2.5	$(0.25 \mathrm{mM})$
$10 \times$ PCR Buffer	2.0	$(1 \times)$
$\mathrm{MgCl}_{2}(25 \mathrm{mM})$	1.0	$(1.25 \mathrm{mM})$
AD Primer* $(10 \mathrm{pmol} / \mu \mathrm{L})$	6.0	$(3 \mu \mathrm{M})$
SP 2 Primer $(10 \mathrm{pmol} / \mu \mathrm{L})$	1.0	$(0.5 \mu \mathrm{M})$
1° PCR Product $(\mathrm{diluted} 100 \times)$	1.0	
Taq Polymerase $(5 \mathrm{U} / \mu \mathrm{L})$	0.2	$(1 \mathrm{U})$

TOTAL $20 \mu \mathrm{~L}$

* Use the same AD primer as in the 1° reaction.

Use the following $2^{\circ} \mathrm{PCR}$ program:

Step			
1	$94^{\circ} \mathrm{C}$	2 min	$\times 1$
2	$94^{\circ} \mathrm{C}$	30 sec	
3	$60^{\circ} \mathrm{C}$	1 min	
4	$72^{\circ} \mathrm{C}$	2 min	
5	$94^{\circ} \mathrm{C}$	30 sec	
6	$60^{\circ} \mathrm{C}$	1 min	$\times 15$ supercycles
7	$72^{\circ} \mathrm{C}$	2 min	
8	$94^{\circ} \mathrm{C}$	30 sec	
9	$44^{\circ} \mathrm{C}$	1 min	
10	$72^{\circ} \mathrm{C}$	2 min	
11	$72^{\circ} \mathrm{C}$	5 min	$\times 1$
12	$4^{\circ} \mathrm{C}$	HOLD	

Ramping speed should be limited to $1^{\circ} \mathrm{C} / \mathrm{s}$.

4. Tertiary $\left(3^{\circ}\right)$ PCR Reaction

Dilute the $2^{\circ} \mathrm{PCR}$ reaction $100 \times$ with MilliQ- $\mathrm{H}_{2} \mathrm{O}$. Set up the $3^{\circ} \mathrm{PCR}$ reaction $(20 \mu \mathrm{~L}$ volume).

	$\times \mathbf{1}$	
Milli-Q $\mathrm{H}_{2} \mathrm{O}$	4.3	
Betaine $(5 \mathrm{M})$	4.0	$(1 \mathrm{M})$
dNTPs $(2 \mathrm{mM})$	2.5	$(0.25 \mathrm{mM})$
$10 \times$ PCR Buffer	2.0	$(1 \times)$
$\mathrm{MgCl}_{2}(25 \mathrm{mM})$	1.0	$(1.25 \mathrm{mM})$
$\mathrm{AD} \mathrm{Primer}^{*}(10 \mathrm{pmol} / \mu \mathrm{L})$	4.0	$(2 \mu \mathrm{M})$
SP3 Primer $(10 \mathrm{pmol} / \mu \mathrm{L})$	1.0	$(0.5 \mu \mathrm{M})$
2° PCR Product $($ diluted $100 \times)$	1.0	
Taq Polymerase $(5 \mathrm{U} / \mu \mathrm{L})$	0.2	$(1 \mathrm{U})$

TOTAL
 $20 \mu \mathrm{~L}$

* Use the same AD primer as in the 1° and 2° reaction.

Use the same PCR program as for the $2^{\circ} \mathrm{PCR}$ reaction.

5. Agarose Electrophoresis of Products

Run the $1^{\circ}, 2^{\circ}$ and 3° products in adjacent lanes on a 1.5% agarose gel ($5 \mu \mathrm{~L}$ each of the 1° and 2° reactions and all $20 \mu \mathrm{~L}$ of the 3° reaction). Look for the characteristic shift in size of the desired product. The change in product size should correspond to the length between SP primers.

If the 3° reaction contains just one product a PCR cleanup can be performed and the product sequenced directly (using the SP3 primer and/or the AD primer). More often there are multiple 3° products, in which case the desired band can be excised from agarose and gel extracted, before being sequenced directly.

If direct sequencing is problematic the product can be cloned and sequenced.

[^0]: * Ramp from $25^{\circ} \mathrm{C}$ to $72^{\circ} \mathrm{C}$ over $3 \mathrm{~min}\left(\Delta 47^{\circ} \mathrm{C}=+0.25^{\circ} \mathrm{C} / \mathrm{s}\right)$. All other ramping speeds are limited to $1^{\circ} \mathrm{C} / \mathrm{s}$.

